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Abstract. A relationship linking the saturation momentum in the case of fixed and running QCD coupling,
respectively, is derived from the Balitsky–Kovchegov equation. It relies on the linear instability of the
evolution equation in the dilute regime. The relationship can also be derived for the Balitsky–Kovchegov
equation with a cutoff accounting for low-density effects.

1 Introduction and results

In deep-inelastic scattering the total cross-section σ for the
scattering of a virtual photon with momentum q on a proton
with momentum p is a function of the virtuality Q2 = −q2
and the rapidity Y = ln(1/x) with x = Q2/(2p · q). At
sufficiently small x ≈ 10−2 the cross-section σ becomes a
function of the ratio of the virtuality Q2 and a function
Qs

2(Y ) of rapidity Y called saturation momentum: σ =
σ[Q2/Qs

2(Y )] [1]. This phenomenon is known as geometric
scaling. Translated to the dipole scattering amplitudeN , it
becomes a function of the difference between the logarithm
L of the square of the momentum variable conjugate to the
dipole size and the logarithm of the saturation momentum:
N = N [L− lnQs

2(Y )].
In quantum chromodynamics (QCD) the scattering of

dipoles is described by the Balitsky hierarchy [2]. In the
factorising limit it reduces to the Balitsky–Kovchegov (BK)
equation [3]. In the low-density regime it in turn simplifies to
the Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation [4].

In [5] scaling solutions for the BK equation are identified
at fixed coupling and with the second-order (“diffusive”)
approximation1 for the BFKL kernel. That investigation is
based on knowledge about the existence of travelling-wave
solutions for the Fisher–Kolmogorov–Petrovsky–Piskunov
(FKPP) equation [6].

This approach is not feasible for the running-coupling
BK equation because it belongs to a different universality
class. Different methods have to be used, like a rescaling of
the rapidityY [7], introduction of curved absorptive bound-
aries into the BFKL equation [8], or use of a travelling-wave

a e-mail: dietrich@nbi.dk
1 The use of the approximate equation’s solution is reasonable

everywhere outside the deeply saturated regime. In the latter
it goes to a constant while the solution of the exact equation
continues to grow logarithmically [3].

ansatz [9]2. Note that, in general, the “time” and “space”
variables need not be linear functions of the rapidity Y and
the momentum variable L.

Here a mapping between the saturation momentum at
fixed and at running coupling, respectively, is derived. The
derivation is based on the observation that in the scaling
regime the saturation momentum characterises an isoline of
the amplitudeN . It is derived by neglecting commutators of
the BFKL kernel and the running-coupling function acting
on the amplitude N . This procedure is justified by the fact
that the BK equation is linearly unstable with respect to
small perturbations around N = 0 (pulled front). At this
level of accuracy it is shown to hold for the saturation
momentum in both cases at large rapidities Y .

As said instability is already present for the BFKL
equation the relationship also holds there. Actually the
validity of the relation seems to be widely independent of
the detailed form of the equation of motion and the form
of the running-coupling function’s equivalent. It appears
to hold for a larger class of differential equations. In this
context, the linear instability appears to be a sufficient
condition. For example, the relationship is satisfied by the
BK equation with the next-to-leading order (NLO) BFKL
kernel [17] as well.

Furthermore, the relationship between the isolines for
fixed and running coupling can also be derived after a cutoff
has been introduced into the growth term of the BK equa-
tion in order to accommodate effects beyond the mean-field
approximation [10, 11, 13]. Even if, strictly speaking, the
thus modified BK equation is no longer linearly unstable
against arbitrarily small perturbations around N = 0, sat-
uration momenta for large rapidities Y are again mapped
onto each other. For the approximation made in the course
of the relationship’s derivation to hold, it suffices that
the BK equation with cutoff is unstable for sufficiently
large perturbations.

2 All of these approaches work also in the fixed-coupling case.
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The comparison of isoline plots [14] obtained by solv-
ing the BK equation numerically [15] for fixed and run-
ning coupling, respectively, according to the relations pre-
sented below, would also provide interesting insights and
cross checks.

In Sect. 2 the mapping between the isolines for the BK
equation for fixed and running coupling, respectively, is
derived. In Sect. 3 the validity of the relationship is checked
for the saturation momentum at large rapidities and the
reason for the accuracy of the relation is discussed. It is
explained how it can be generalised to a larger class of
differential equations. Section 6 treats the mapping for the
BK equation with a cutoff taking into account low-density
effects. For convenience Appendix A exposes details of the
connection between the fixed-coupling BK equation and
the FKPP equation.

2 Relation

The BK equation for the dipole forward-scattering ampli-
tude as a function of the rapidity Y and the momentum
variable L is given by

∂N

∂Y
= ᾱ

[
χ

(
− ∂

∂L

)
N −N2

]
, (1)

with the BFKL kernel

χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ), (2)

where ψ(γ) is the digamma function – the logarithmic
derivative of the gamma function – and where the BFKL
eigenvalue-function with a differential operator in the ar-
gument is defined via its series expansion around γ0 ∈]0; 1[.

The phenomenon of scaling manifests itself by the iso-
lines of the amplitude N(Y, L) keeping their distance from
each other in the direction of the variable L constant if the
rapidity Y changes. In other words, the amplitude is only a
function of the difference L− lnQs(Y )2. Consequently, in
the scaling regime, the saturation momentum Qs = Qs(Y )
characterises the isoline with N [Y,Qs(Y )] = Ns

3. There,
the equations describing two isolines differ merely by an
additive constant.

Independent of the phenomenon of scaling, any isoline
Li = Li(Y ) of the amplitude N(Y, L) satisfies the relation

dLi

dY
= − ∂N

∂Y

(
∂N

∂Li

)−1

. (3)

For fixed QCD coupling, ∂N/∂Y can be replaced by the
right-hand side of (1):

dLf

dY
= −ᾱ

[
χ

(
− ∂

∂Lf

)
Nf −Nf

2
] (

∂Nf

∂Lf

)−1

. (4)

3 The last condition defines this isoline also outside the scaling
regime, although, strictly speaking, there, Qs does not deserve
the name “saturation momentum”.

The running-coupling case is obtained through the replace-
ment ᾱ → (bL)−1:

dLr

dY
= − 1

bLr

[
χ

(
− ∂

∂Lr

)
Nr −Nr

2
] (

∂Nr

∂Lr

)−1

. (5)

The constant b is linked to the QCD-β-function and reads
b = (11nc − 2nf )/(12nc). nc stands for the number of
colours and nf for the number of (massless) flavours.

Hence, division of (4) by Lf , taking into account the
common initial condition

Nf(Y0, L) = N0(L) = Nr(Y0, L), (6)

yields

1
Lf

dLf

dY0
=

dLr

dY0
. (7)

The constants ᾱ and b have been omitted for the sake of
clarity. It suffices to keep in mind to exchange the two in
a comparison.

Analogous relations for the higher derivatives can be
derived by repetition of the above steps: After taking the
derivatives of (4) and (5) with respect to the rapidity Y ,
replace the new occurrences of the derivative ∂N/∂Y on
the right-hand side with the help of the BK equation (1).
Subsequently, divide the expression obtained from (4) by
Lf . This allows one to identify the respective right-hand
sides at Y = Y0 up to terms involving commutators of the
BFKL kernel with the running-coupling function acting
on the amplitude [χ(−∂L), L−1]−N . They are going to
be omitted in what follows. Why this is justified will be
investigated in Sect. 3.

Together with the initial condition

Lf(Y0) = L0 = Lr(Y0), (8)

this hierarchy of equations can be summarised by

[
1

Lf(Y0)
d

dY0

]n

Lf(Y0) =
[

d
dY0

]n

Lr(Y0). (9)

for all n ∈ {0; 1; 2; . . .}. This defines all Taylor coefficients
of Lr(Y ) at rapidity Y = Y0 based on those of Lf(Y ).

Inversely, by multiplying with Lr each time instead of
dividing by Lf one obtains all Taylor coefficients of Lr(Y )
from those of Lf(Y ):

[
d

dY0

]n

Lf(Y0) =
[
Lr(Y0)

d
dY0

]n

Lr(Y0). (10)

Equation (9) can be reexpressed as

Lr(Y0 + δY ) = exp
{

δY
1

Lf(Y0)
d

dY0

}
Lf(Y0), (11)

and (10) accordingly as
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Lf(Y0 + δY ) = exp
{

δY Lr(Y0)
d

dY0

}
Lr(Y0) (12)

for all δY . This can be verified by Taylor expansions around
δY = 0. The exponentials in (11) and (12) are operators
for conformal mappings. In the following calculations the
interpretation as translation operators is to be used. (Alter-
native computations could, for example, involve dilatation
operators.) With the definitions

dZf

dY
= Lf(Y ) (13)

and

dZr

dY
=

1
Lr(Y )

, (14)

respectively, these turn into

Lr(Y0 + δY ) = exp
{

δY
d

dZf

}
Lf [Yf(Zf)]

= Lf{Yf [Zf(Y0) + δY ]} (15)

and

Lf(Y0 + δY ) = exp
{

δY
d

dZr

}
Lr[Yr(Zr)]

= Lr{Yr[Zr(Y0) + δY ]} (16)

for all δY . Yf(Zf) and Yr(Zr) are the inverse functions of
Zf(Y ) and Zr(Y ), respectively, as defined in (13) and (14).
Equations (15) and (16) provide a direct link between the
isolines of the solutions for the equations of motion in the
fixed- and the running-coupling case. They hold irrespec-
tive of whether the exact or an approximative expression,
for example, the second-order expansion around γ = γc, is
used for the BFKL kernel (2).

3 Comparison

For large rapidities Y , the expression for the (logarithm of
the) saturation momentum – up to an arbitrary additive
constant – in the case of fixed coupling reads [8, 9, 15,16]

Lf(Y ) = ᾱ
χ(γc)
γc

Y. (17)

The BFKL kernel (2) has been expanded around γ0 = γc
which solves the equation γcχ

′(γc) = χ(γc) and has the nu-
merical value γc = 0.6275 . . . [9]. For the running-coupling
case the saturation momentum is given by [8, 9]

Lr(Y ) =

√
2χ(γc)
bγc

Y . (18)

The rapidity variable Y in the last two equations can differ
by an additive constant ∆ Y .

Starting out with (17) one finds from (13)

Zf(Y ) = ᾱ
χ(γc)
2γc

Y 2. (19)

Inversion yields

Yf(Zf) =

√
2γc

ᾱχ(γc)
Zf . (20)

Evaluation at Zf(Y0) + δY leads to

Yf [Zf(Y0) + δY ] =

√
2γc

ᾱχ(γc)
[Zf(Y0) + δY ]. (21)

Replacing the rapidity Y in (17) by the right-hand side of
the previous expression and afterwards ᾱ by b−1 yields√

2χ(γc)
bγc

(Y0 + δY + ∆Y ) = Lr(Y0 + δY ), (22)

where constants have been absorbed in ∆Y . Thus (15) is
satisfied by (17) and (18). With analogous calculations also
(16) can be verified.

3.1 Subleading terms

In the literature further terms are known for the logarithm
of the saturation momentum, which are universal – up to
an additive constant – for large rapidities Y . For fixed
coupling the entire expression reads [8, 9, 16]

Lf(Y ) (23)

= ᾱ
χ(γc)
γc

Y − 3
2γc

lnY − 3
γc

2

√
2π

ᾱχ′′(γc)

√
1
Y
.

The third term is only given in [16] and there the error is
of the order O(Y −1). For the running-coupling case two
leading terms are known [8,9]:

Lr(Y ) =

√
2χ(γc)
bγc

Y +
3
4

[
χ′′(γc)√
2bγcχ(γc)

] 1
3

ξ1Y
1
6 . (24)

With the first two terms in (17) one finds from (13)

Zf(Y ) = ᾱ
χ(γc)
2γc

Y 2 +
3

2γc
(1 − lnY )Y, (25)

the exact inverse of which cannot be given analytically. The
factor (1 − lnY ) varies slowly as compared to powers of Y .
Regarding it as fixed in every step, one can determine the
inverse iteratively. Starting out with lnY (0)

f (Zf) = 1 leads
to (20) for Y (1)

f (Zf). Replacing lnY in the logarithm in
(25) by the preliminary result of the iteration lnY (1)

f (Zf)
[in general lnY (n)

f (Zf)], subsequent inversion, and selection
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of the positive solution in every step finally leads to the
recursion relation

Y
(n+1)
f (Zf) = −

3
[
1 − lnY (n)

f (Zf)
]

2ᾱχ(γc)
(26)

+

√√√√√



3
[
1 − lnY (n)

f (Zf)
]

2ᾱχ(γc)




2

+ [Y (1)
f (Zf)]2.

It shows that the dominant behaviour for large Zf – and
hence large Y (1)

f (Zf) – can be obtained after a finite number
of iterations. The dominant terms are given by

Y
(n+1)
f (Zf) = Y

(1)
f (Zf) +

3
2ᾱχ(γc)

lnY (n)
f (Zf) (27)

− 1
2

[
3

2ᾱχ(γc)

]2 [lnY (n)
f (Zf)]2

Y
(1)
f (Zf)

+ O
[

1

Y
(1)
f (Zf)

]
,

where constant terms have been omitted. Replacing the
rapidity Y in the first two terms of (17) by the right-hand
side of the previous expression yields

L̄r = ᾱ
χ(γc)
γc

Y
(1)
f (Zf) − 9

8
1

ᾱχ(γc)γc

[lnY (1)
f (Zf)]2

Y
(1)
f (Zf)

+O
[

lnY (1)
f (Zf)

Y
(1)
f (Zf)

]
, (28)

which can already be obtained from the second-order result,
i.e., from (26) with n = 1. Evaluation at Zf(Y0) + δY leads
to the replacement

Y
(1)
f (Zf) → Y

(1)
f [Zf(Y0) + δY ]

=
γc

ᾱχ(γc)

√
2χ(γc)
bγc

(Y0 + δY + ∆Y ), (29)

which coincides with (21). Finally, ᾱ has to be replaced
by b−1.

Again, the leading term of (18) is reproduced. The first
subleading terms in (18) and (28) together with (29) do not
coincide exactly. However, they are similar qualitatively.
Through their inclusion with the leading term, Lr and L̄r
are both diminished. The relative error vanishes for large
rapidities Y like (L̄r − Lr)/(L̄r + Lr) ∼ Y −1/3.

In principle, it is possible to base the above comparison
on (16). While the integral required for solving (14) is still
known analytically forLr(Y ) given by (18), the inversion of
the resulting expression is more cumbersome than for (25).

4 Commutator

As has just been demonstrated, neglecting the commuta-
tor [χ(−∂L), L−1]−N leads to a mapping satisfied by the
expressions (17) and (18) for the saturation momentum at

fixed and running coupling, respectively. In what follows
it shall be discussed why this is the case.

Omitting said commutator is equivalent to approximat-
ing the prefactors of themth derivatives with respect to the
momentum variable L occurring on the running-coupling
side during the relationship’s derivation by the term dom-
inant for large L: [L−1 + O(L−2)]∂L

mN ≈ L−1∂L
mN .

Subsequently one would have to justify why L is effec-
tively so large that the above steps are feasible. One is
tempted to bring forward the fact that saturation physics
is protected from the influence of the infrared, i.e. from
small L. However, through the repetition of the identical
steps the above relationship can also be derived for the
BFKL equation and in the BFKL equation no saturation
effects are encoded.

As this line of arguments is not conclusive let us investi-
gate how shifting the BFKL kernel by an additive constant
χ̄(γ) = χ(γ) + δ does affect the expression for the satu-
ration momentum. First for arbitrary values of the shift δ
the modified critical value γ̄c for the argument γ, defined
through χ̄(γ̄c) = γ̄cχ̄

′(γ̄c) obeys 0 < γ̄c < 1. Therefore
the solution stays always in the supercritical regime of the
FKPP equation γ̄−1

c > 14, i.e. it has always a universal
travelling-wave solution [5, 9]. Hence one can explore the
effect of the shift δ directly with the help of the expression
for the saturation momentum in (17).

For δ > −4 ln 2, χ̄(γ) remains positive definite and
the same qualitative asymptotic behaviour is retained, al-
though reaching the asymptotic regime might require ex-
tremely large rapidities Y if χ̄(γ̄c) � 1.

The picture changes for δ = −4 ln 2, where γ̄c = 1
2 and

χ̄(γ̄c) = 0, i.e. the minimum of the kernel becomes zero.
The term proportional to the rapidity Y is absent. As ex-
plained above, by shifting the BFKL kernel one stays in
the supercritical regime of the FKPP equation. However,
the L and the x axes are not parallel to each other. In
this particular situation x ∼ 2t is mapped exactly onto
L = const. (see Appendix A), whence the prefactor in (17)
vanishes although the FKPP equation has a supercritical
travelling-wave solution. In other words, for δ = −4 ln 2
the BK equation is not linearly unstable for small pertur-
bations aroundN = 0 even if the FKPP equation is. In the
expression for the running coupling (18) the prefactor of
the square root of the rapidity Y vanished in unison with
the one in the fixed-coupling case.

Proceeding to δ < −4 ln 2 leads to χ̄(γ) also taking
negative values and especially to a negative critical value
χ̄(γ̄c) < 0. Thus the term in the fixed-coupling saturation
momentum proportional to the rapidity Y reappears but
with a negative sign. This means that for growing rapidities
Y the amplitude decreases. With this kernel the BK equa-
tion is stable against perturbations around N = 0. In this
range, according to (18), the saturation momentum in the
running-coupling case would even be complex. This shows
that the latter case would have to be investigated anew.

4 In order to clarify the necessary connections Appendix A
displays the mapping that leads to the FKPP equation.
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Summarising, the term of the differential equation im-
portant for the instability around N = 0, thereby for the
commutator to be negligible, and hence for the mapping to
work, is the one originating from the critical value of the ker-
nel χ(γc). It is not decisive whether higher negative powers
of L are suppressed because of an effectively large L. Pre-
serving only the term χ(γc) and deriving the relationship
between the isolines for the different couplings leads ex-
actly to the previous results, because in this limit the crucial
commutator vanishes exactly, [χ(γc), L−1]N = 0. Based on
these observations one can understand why the sublead-
ing terms cannot be matched exactly: The dependence on
χ′′(γc) of the subleading term in the running-coupling case.
The more general derivation in Sect. 2 resums additional
terms which lead to the same overall behaviour. The pres-
ence of these derivative terms is important as, otherwise, a
front would never be able to propagate into an area of values
of L where N = 0 exactly at a given initial rapidity Y0.

5 NLO BK

Based on the discussions in the last two sections the present
approach should work equally well for any pair of differ-
ential equations which can be written in the form

∂N

∂Y
= αf

({
∂nN

∂Ln

})
, (30)

and which are linearly unstable around the dilute state,
widely independent of the details of the remaining terms
and the detailed structure of the equivalent of the running-
coupling constant. The main step for adapting to another
situation is replacing the right-hand sides of (14) or (13),
respectively, by the new running-coupling function ᾱ(L)
or its reciprocal [ᾱ(L)]−1, respectively.

Along these lines let us investigate the BK equation
with the BFKL kernel at next-to-leading order (NLO) [17]
in the approximation due to [18]

χNLO

(
− ∂

∂L
,
∂

∂Y

)
≈

(
1 − ∂

∂Y

)
χ

(
− ∂

∂L

)
. (31)

As has been seen above, the crucial part of the kernel is
its value at γc. For this reason, here only that term is
retained and the NLO BK equation at fixed coupling can
be expressed as

∂Nf

∂Y
=

ᾱ

1 + ᾱχ(γc)
[χ(γc)N −N2], (32)

with the usual replacement ᾱ → (bL)−1 in the running-
coupling case. As a side remark, this equation shows that
the BFKL growth is reduced by the NLO contributions. In
the running-coupling case the LO BK equation is recovered
at large values of L. Be this as it may, now the mapping
can be evaluated for (32) at fixed and running coupling,
respectively. In analogy with (17), for the initial condition
N(Y = Y0, L) ∼ e−γcLθ(L) the form of the fixed-coupling
isoline in the linear regime is given by

Lf(Y ) =
ᾱχ(γc)

[1 + ᾱχ(γc)]γc
Y. (33)

With

Zf(Y ) =
ᾱχ(γc)

2[1 + ᾱχ(γc)]γc
Y 2 (34)

one finds by repeating the steps in Sect. 3
√

2χ(γc)
bγc

(Y0 + δY + ∆Y ) = Lr(Y0 + δ Y ), (35)

which coincides with (22). This is in correspondence with
the observation that in the running-coupling case the mod-
ified BK equation converges to the unmodified for large
values of L.

Using the mapping in the opposite direction – that is
from the running to fixed coupling – still yields the correct
form for the NLO-modified fixed-coupling case (33) if the
correct prefactor from (32) is used.

6 Low-density effects

The BK equation describes the mean-field limit of the
Balitsky hierarchy. The mean-field approximation is best
satisfied in the dense regime and least in the dilute. There
fluctuations are important. As mentioned above, for the
relevant boundary conditions, the BK equation describes
the propagation into a linearly unstable state. This leads
to a high sensitivity of the solution to modifications at the
toe of the front. In [10,13] it has been demonstrated that
the principal correction to the front propagation speed can
be simulated in a deterministic manner by cutting off the
growth term for small values of the amplitude. For example
in the diffusive approximation to the BK equation this leads
to the following modified equation of motion:

∂N

∂Y
= ᾱ

[
χ2
∂2N

∂L2 + χ1
∂N

∂L
+

(
χ0N −N2) c(N)

]
,(36)

with the replacement ᾱ → (bL)−1 for the case of running
coupling and where the coefficients χi, i ∈ {0; 1; 2} are
given in Appendix A and with the cutoff function

c(N) = θ (N − ε) , (37)

with ε � χ0.
Carrying out the steps of the derivation beginning with

(3) but this time for the modified BK equation (36) instead
of its standard form (1) yields again (15) and (16). Looking
at the modified expressions for the saturation momentum
one sees that (15) and (16) are satisfied exactly: At fixed
coupling the isoline equation for large rapiditiesY reads [10,
11,13]

Lf(Y ) = ᾱ

[
χ(γc)
γc

− π2

2
γcχ

′′(γc)
ln2 ε

]
Y. (38)

At running coupling one finds [11]
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Lr(Y ) =

√
2
b

[
χ(γc)
γc

− π2

2
γcχ′′(γc)

ln2 ε

]
Y . (39)

The introduction of the cutoff removes the linear in-
stability of the BK equation with respect to perturbations
smaller than the threshold ε. However, the instability for
perturbations larger than ε is sufficient to ensure that the
modified expressions for the saturation momentum are
qualitatively similar to those of the unmodified version.
Consequently the mapping still works.

In this last context the term “saturation momentum” is
avoided on purpose because after the inclusion of stochas-
tic effects the solutions of the BK equation do no longer
provide the observable amplitude but the amplitude for
the scattering on a given partonic realisation of the tar-
get [11,13]. The physical amplitude is obtained by means of
an ensemble average [13] accounting for the non-vanishing
variance of the front position [10]. Then the physical am-
plitude does no longer show geometric scaling for high
rapidities Y [11, 13].

7 Summary

A mapping between the asymptotic isolines of a pair of two-
dimensional partial differential equations has been derived.
The differential equations are of first order in one of the
variables (time) and can be of arbitrary order in the other
(space). The two equations differ by a prefactor in front
of the first temporal derivative. The overall factor is a
function of the spatial variable. The mapping works, if the
differential equations are linearly unstable with respect to
perturbations around a fixed point.

The investigation has been motivated by and was car-
ried out for the BK equation at fixed and running cou-
pling, respectively. The relationship can be verified for the
leading terms of the saturation momentum at fixed and
running coupling, respectively. Therefore, due to the linear
instability of the pair of partial differential equations, the
relation works to this accuracy. Subleading terms for the
saturation momentum are not mapped onto each other ex-
actly, although the qualitative correspondence is preserved.
Thence the relative error between the actual saturation mo-
mentum at running coupling and the one predicted from
the fixed-coupling case by applying the mapping decreases
like Y −1/3. The extension to an exact mapping of the sub-
leading terms is under investigation. To the same accuracy
the relationship has been verified for the isolines of the NLO
BK equation and the BK equation with a cutoff accounting
for fluctuations.
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Appendix A: Mapping: FKPP↔BK

The fixed-coupling BK equation for N = N(Y, L) in the
second-order (“diffusive”) approximation:

∂N

∂Y
= ᾱ

[
χ2
∂2L

∂L2 + χ1
∂N

∂L
+ χ0N −N2

]
, (A.1)

with

χ0 = γc
2χ′′(γc)/2,

χ1 = γcχ
′′(γc) + χ(γc)/γc,

χ2 = χ′′(γc)/2, (A.2)

is mapped onto the FKPP equation for u = u(t, x):

∂u

∂t
=
∂2u

∂x2 + u− u2, (A.3)

by the relation

N(Y, L) = [γc
2χ′′(γc)/2] × u[t(Y ), x(Y, L)], (A.4)

with

t = ᾱY × [γc
2χ′′(γc)/2],

x = ᾱY × [γc
2χ′′(γc) + χ(γc)] + L× γc. (A.5)
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